A New Angular Tropospheric Refraction Model

A. L. Berman and S. T. Rockwell*
Network Operations Office

As part of an effort to obtain a new angular tropospheric refraction model for
use within the DSN, an empirical model has been constructed which very accu-
rately reflects precise optical refraction data. The model developed is a single
analytic function, is finite over the entire domain of elevation angle, and is highly
accurate over large ranges of pressure and temperature.

I. Introduction

There exists here at the Jet Propulsion Laboratory
(JPL), and particularly within the Deep Space Network
(DSN), a need for an accurate, yet modestly sized, an-
gular tropospheric refraction model. The basic angular
refraction model (and several close variants) currently in
use at JPL consists of three radically different analytic
functions, each applicable over a different range of zenith
angle (zenith angle = 90° - elevation angle) and is there-
fore immediately rather cumbersome. Furthermore, the
accuracy of the current JPL refraction model is not well
documented, and is thus subject to considerable doubt.

The present time is particularly well suited to reexam-
ine the question of an angular refraction model for the
following reasons:

1Currently graduate student in physics at the University of Cali-
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(1) The remote site Antenna Pointing Subsystem (APS)
is currently being redesigned, thus affording the
capability to easily change the angular refraction
modeling.

(2) The recent advent of X-band capability, with an
antenna beamwidth of approximately 0.020°, has
underscored the need for high-accuracy angular
predicts.

The angular refraction model (or variants thereof) cur-
rently in use at JPL is as follows:

(1) For Z < 80.26°,
R = (N/10%) tan Z

(2) For 90° > Z > 80.26°,

N 0.0007
R = 34—0> - 0.00126
0.0589 + (-’21 — z*)
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(3) For Z > 90°,

x 180 [ e
R= <T§6> (0.60874 — 0.201775 {T} [Z —2-]>

where
R = refraction correction, rad
Z = zenith angle (actual), deg
Z* = zenith angle (actual), rad

N = “refractivity”

To gauge the degree of error inherent to the current
JPL refraction model, it has been contrasted to a con-
tinuous set of refraction data as computed from the work
of B. Garfinkel (see Refs. 1 and 2), and is seen in Fig. 1.
The Garfinkel data is for pressure P = 760 mm of Hg and
temperature T = 0°C; the JPL model data has been
matched to these conditions by setting N = 288. The
most distressingly obvious flaws in the current JPL model
are the discontinuities in R at the two breakpoints, these
discontinuities (and hence errors in one or the other seg-
ment) amounting to approximately 30 and 300 arc sec-
onds (sec), respectively. (Note: For the duration of this
report, refraction quantities will be dealt with in terms of
arc seconds, with 0.001° = 8.6 sec.) Further examination
of the current model discloses that the first two segments
are dependent upon the “refractivity” N, and hence pres-
sure and temperature, while the third segment is not.
Given that the current JPL model is inaccurate, has very
large discontinuities at the segment breakpoints, and is
fundamentally- cumbersome because of the tri-segment
construction, it would seem to be a likely candidate for a
more accurate and reasonable replacement.

Il. General Approach to a New Angular
Refraction Model

In the previous section, the undesirability of the cur-
rent JPL angular refraction model was demonstrated; in
this section the general philosophy used to generate a
new angular refraction model will be dealt with. One
starts with the fact that angular refraction is crucially
important in the effectuation of various astronomical en-
deavors, and hence there exists copious amounts of refrac-
tion data. The main drawback to these data is, however,
that they are either in tabular form or are calculated via
schemes which require large amounts of tabular inputs
(for instance, see Refs. 1, 2, 3, and 4). Furthermore, the
astronomical accuracy requirements are very stringent
(perhaps down to about the 1-sec level), while the DSN
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requirements are no greater than the 10-sec level. In light
of the above, it is clear that one reasonable approach
would be to use empirical methods to develop a simple
analytical expression to approximate the very accurate
astronomical refraction data available. Since the envi-
sioned use of the new model within the DSN includes
small remote site computers as well as large central com-
plex computers, desirable features would include:

(1) A single expression over the entire domain of Z,
instead of multiple segments, each applicable over
different ranges of Z.

(2) Accuracy to about the 10-sec level for reasonable
ranges of Z and tropospheric conditions.

(3) Model to be designed to minimize both computer
memory and run time.

Il. Selection of an Angular Refraction
Data Base

After a review of the literature, it became apparent that
a reasonable selection for a data base would be the work
of Boris Garfinkel of the Yale University Observatory
(see Refs. 1 and 2). Garfinkel’s original theory was pub-
lished in 1944, and then reexamined in 1966. The form of
his model is semi-analytical in that it is a closed function
with Z, P, T as variables, but also requires tabular input
in the form of Z-dependent polynomial coefficients.
More importantly, his model is continued for Z > 90°, an
aspect which is most frequently missing in other angular
refraction works. Finally his work compares well with
other authorities in the field. For instance, Garfinkel com-
pares his data at P = 760 mm and T = 0°C with those of
the Radau and the Pulkova models as follows (with Z’
(observed zenith angle) in degrees and R in seconds):

- R R R
Garfinkel Radau Pulkova

80 331 331 331
81 368 366 365
82 410 409 408
83 463 462 460
84 531 529 527
85 619 617 614
86 738 735 733
87 905 903 900
88 1153 1152 1147
89 1544 1545 1537
90 2206 2208 2199
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Table 1 provides a detailed tabulation of Garfinkel
refraction data for 0° < Z <93°, P=760 mm, and
T =0°C.

IV. Derivation of a Basic Angular
Refraction Model

The needs of the DSN for an angular refraction model
are restricted to the following range of Z’:

0° <77 < 92°
. where
Z' = Z — R(Z) = observed zenith angle

this range being encompassed by the Garfinkel data in
Table 1. It was hoped that the data base chosen (i.e., the
Garfinkel data whose selection was discussed in the pre-
vious section) could be approximately fit to a function (or
functions, as necessary) via routine least squares tech-
niques. It was planned to do all work for P == 760 mm
and T = 0°C under the assumption that P and T effects
could be (multiplicatively) added at a subsequent time.
The data base chosen was a slightly smaller subset of the
data base displayed in Table 1. The frequency of data
points was rather arbitrarily chosen as follows:

Range of Z, deg Data frequency, deg

0<Z <70 05
70<7Z <85 02
85 < Z <93 01

with the net effect that the refraction data were increas-
ingly “weighted” in the high Z region where the rate of
change of refraction is the greatest. The computer pro-
gram utilized in this study is a standardized least squares
subroutine available to all UNIVAC 1108 users at JPL
(see Ref. 5). Basically, it fits a data set to an nth degree
polynomial such that the residuals are minimized in a
least squares sense, ie.,

if Ri(Z:); i = data set

then a function X is formulated such that
X= 3K (U@))
=0
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where
1
K1 - E [(Ri)max + (Ri)min]
_1 R — (R
Kz - E’ [( i)max ( i)min]
1
U(@) =3 [Z - K]

and where the conditions satisfied are the following n
equations in n unknowns.

Let

A; = Ri(Z;) — X(Z,)

o=[3at]”

Then, finally,

oo

oK, 0
do

K
do

aKj+2 B 0

It was originally intended to attempt a least squares
curve fit to the “raw” refraction data, shown in Fig. 2. It
was observed, however, that the natural log (In) of R gave
a very smooth representation and possessed, of course,
far less dynamic range, as can be seen in Fig. 3. It seemed
possible that it might yield a better fit for a lower order
polynomial (a desirable property), i.e., fitting:

In(Ri(Z;)); X

Finally, it was observed that taking the inverse tangent
(arctan) of In (R) yielded a representation that appeared
almost linear, as can be seen in Fig. 4. This was also felt
to be worth attempting as a fit, in the form of:

ln (Rl(Zt))
arctan {W}, X
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The In (R) fit was attempted first as the most likely
candidate. The main goal established was to find the
smallest order fit which would keep the maximum resid-
ual below some reasonable limit. The results of a series
of different order fits appear in Fig. 5. Although it might
at first seem strange that the absolute maximum residual
does not decrease monotonically with degree of fit, all one
should really expect is that ¢ decrease monotonically with
degree of fit, and this was the case. At any rate, the 8th
degree case was felt to be the best compromise, as one
needed to go to a 14th degree fit to obtain significant im-
provement. The other two types of fits were attempted,
with a general tradeoff expected that an increase in func-
tional dependence (In, arctan, etc.) should decrease the
order of fit necessary. A few of the salient features of each
of the three types of fits attempted are:

(1) Raw Data Fit

(a) Simple—no additional functions required for
modeling.

(b) Minimum acceptable polynomial required
~12th order.

(c) Large residuals (~20 sec or higher) as Z— 0°,
leading to unpalatable result of refraction being
applied in wrong direction at very small Z, etc.

(2) Ln(R) Fit

(a) Model would require natural exponentiation
(exp).

(b) Minimum acceptable polynomial required
~8th order.

(c) Logarithmic condition of fit forces residuals to
be approximately proportional to R, so resid-
uals quite small except at very large Z.
(8) Arctan (In(R)) Fit
(a) Model would require tangent (tan) and exp.
(b) Minimum polynomial fit required ~6th order.
(c) Extremely low residuals for Z =< 90° and quite

high residuals for Z = 90°,

A comparison of the three types of fits is seen in F ig. 6.2
The In R fit was assessed to be the best compromise

2This figure and Figs. 7, 9, and 10 were prepared on the basis of
interim results and are at variance with the final model by as
much as 5 sec at large Z. Therefore, they should be used for
illustration only.
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amongst the design goals stated in Section II. Further
refinement to the 8th order In R fit was accomplished by
making minor adjustments to the data set used in the fit
process, until an optimum fit (in the sense of the smallest
maximum residual) was achieved. For this case, the maxi-
mum residual in the interval 0° < Z < 92° occurred at
about Z = 91.1° and had a value of:

AR = -+21.6 sec

V. Complete Refraction Model Determination

The refraction model, as finally determined in the pre-
vious section, is as follows:

R = exp {JZ K;.. [U(Z)]f} ~ K

where
R = refraction, sec
Z = zenith angle, actual

EL = 90° — Z = elevation angle

Uz = {z ;(K}

K, = 46.625
K, = 45375
K, = 4.1572
K, = 1.4468
K; = 0.25391
K, = 22718
K, = —1.3465
Ks = —4.3877
K, = 3.1484
K, = 4.5201
K, = —1.8982
K, = 0.89000

When this model is compared to the Garfinkel data (with
P =760 mm and T =0°C), the following maximum
residuals® result: -

0° <Z<85° AR = + 5.6sec

#All residuals (AR) will be Garfinkel Data — Proposed Model.
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85° < Z <92° AR = + 2l.6sec

92° < Z < 93° AR = —302.8sec

The very large residuals between Z = 92° and Z = 93°
are primarily a result of ending the fit at 92°. At this
point there was still one point of concern and that was:

As Z > 93°
|R|—> very large

such that at some Z > 93° there exists the following
‘condition:

Z — R(Z) < 90° (or local horizon)

giving the appearance of a “false” rise. This would, of
course, pose difficulties for trajectory-type programs which
calculate, and examine for a rise condition, zenith angles
considerably larger than 90°. Based on this undesirable
feature, it was felt that the model should be modified
such that shortly after Z = 93° it would be required that:

R(Z)—0

At the same time, it was felt that possibly the charac-
teristics of the model for Z=90° could be improved
upon. The residuals between Z = 90° and Z = 93° look
like:

MODEL
RESIDUALS

— 7 ———»

It was therefore felt that if a function (say, As(Z)) could
be derived with inverse characteristics to the above resid-
uals plus possessing the following qualities:

A4(Z)—> very large for Z = 93°
A4(Z) — very small for Z = 90°

Then a model of the form:

R=ep{(£K. (0@)) /114 a1} - k.
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could perhaps both improve the present model between
90° and 93° and drive the model to approximately zero
(actually 1 — K;,) thereafter. A function to accomplish
this was constructed (empirically) as follows:

Ay(Z) = (Z — Co) {exp [CL(Z — C,)]}
where

Z = zenith angle, deg

C, = 91.870
C, = 0.80000
C; = 99.344

The improvement in the Z = 90° to Z = 93° region
can be seen in Fig. 7, while the rapid drop off of the
modified model after Z = 93° can be viewed in Fig. 8.
The maximum residuals after the above modification
become:

0° <Z < 85° AR = + 5.6sec
85° < Z<92° AR = —14.7sec
92° < Z < 93° AR = —15.0sec

VI. Refraction Model Functional Dependence
Upon Pressure, Temperature, and
Relative Humidity

It was originally felt that once a refraction model for
standard conditions (P = 760 mm and T = 0°C) had been
achieved, the usual scaling by P/760 and 273/(T + 273)
could be applied. However, after examining different
combinations of P and T in the Garfinkel data, this did
not prove to be an adequate treatment of the pressure
and temperature dependence, and additional work in this
area was required.

A. Pressure Correction

Examination of the Garfinkel data at different pressures
indicated that scaling of the basic model by P/760 was
reasonable at most Z, but broke down as Z = 90°, It was
hoped that this could be compensated for by a correction
tactor (say, A,(P, Z)) such that the entire pressure correc-
tion factor would be of the form:

P
=51 — &P Z)}
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Furthermore, it would be necessary that:
AP, Z) =0, Z < 90°
A(P,Z)— 0, Z = 93°

It was noted in the examination of the Garfinkel data
that the pressure effect (as different from P/760) was for
the most part separable, i.e.:

(P, Z) ~ AlP)AL(Z)
and it could be seen that further:
Ay(P) ~ (P — 760)

A representation for A, was then empirically constructed
as follows:

A(Z) ~ exp [A[(Z — A,)]
so that the A,(P, Z) pressure correction would be:
A(P,Z) = (P — 760) exp [A,(Z — A,)]

The results of using A,(P,Z), above, can be seen in
Fig. 9. Finally, to satisfy the conditions of a small a,(P, Z)
for Z > 93°, the previously determined A;(Z) was utilized
to arrive at the following expression:

Pressure correction factor =

P fl (P —760) exp [A(Z — Ag)]}
760 | 1+ A4(Z)
where
Z = zenith angle, deg
P = pressure, mm of Hg
A, = 040816
A, =112.30
A4(Z) = as previously defined

B. Temperature Correction

The investigation of temperature effects proceeded
along the same lines as the investigation of pressure
effects in the previous section, with the goal of a total
temperature correction factor in the form of:

273

T3 {1 — 2T, Z)}
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in combination with the conditions:
AT, Z) =0, 7 < 90°
AT, Z)— 0, Z = 93°

Similarly, the temperature effect was found to be ap-
proximately separable:

AT, ZY ~ A{T)ALZ)
and the following was (empirically) constructed:
A ~T
A, ~ exp [Bi{(Z — B,)]
so that the A,(T, Z) temperature correction would be:
AT, Z) = (T) exp [B{(Z — B,)]

The results of using A,(T,Z), above, are seen in Fig. 10.
Once again, to satisfy the condition of a small A,(T,Z)
for Z = 93°, the previously determined A,(Z) is utilized
to arrive at the following total expression:

Temperature correction factor =

218§ (T)exp[B\(Z — Bg)}}
T + 273} 1+ ay(Z)
where
Z = zenith angle, deg
T = temperature, °C
B, = 0.12820
B, = 14288

A4(Z) = as previously determined

C. Relative Humidity Correction

Both the Garfinkel (see Ref. 2) and the Pulkova models
(see Ref. 4) indicate that the correction for relative
humidity is very small, perhaps on the order of several
seconds, at large Z. This seems reasonable since optical
refraction is generally considered to be proportional to
dry refractivity:

R = Roptical ~ Ndry

where

P
Ndry = 776 {T}
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whereas radio frequency refraction is considered to be
proportional to total refractivity:

Rradio —~ Ndry + Nwet

Naydl+ Nyes
—~ dry Ndry

where

Nyew 2 77.6 [4810] {(_RHZTE_@}

and
RH = relative humidity
¢, = saturation vapor pressure
If one should merely account for this difference by

scaling the optical results by the following factor (as is
effectively what has been done in the past):

{l + N\vet}
Ndry

so that:

N\ve
Rradio (P> T; RH; Z) = Roptical (P’ Ta Z) {1 + N t}
dry

one would immediately expect the transformed model
(Riadio) to preserve the design features from Section II as
well as to possess considerably greater accuracy than the
current JPL models. However, the whole question of
transforming the optical angular refraction model de-
scribed in this report to the radio frequency level requires
additional study before a definitive statement about the
transformed model accuracies can be made.

VIl. Complete Angular Refraction With
Pressure and Temperature
Corrections

The final refraction model with pressure and tempera-
ture accounted for is as follows:

( 3 Ky [U@)
R =F,F\ exp EETY I — Ky

(- £33
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P (-5 )
AP, Z) = (P — Py){exp [A((Z — A)])
Ay(T,Z) = (T — To){exp [B(Z — B:)]}
A(Z) = (Z— C){exp[Ci(Z — C)1}
where
R = refraction, sec

Z = actual zenith angle, deg

EL = 90° — Z = elevation angle

vz = {z ;K}

K, = 46.625
K; = 45.375
K; = 4.1572
K, = 1.4468
K; = 0.25391
K, = 2.2716
K; = 1.3465
Ky = —4.3877
K, = 3.1484
K,, = 4.5201
K,; = —1.8982
K,, = 0.89000
P = pressure, mm of Hg
P, = 760.00 mm
A, = 040816
A, = 112.30
T = temperature, K
T, = 273.00 K
B, = 0.12820
B, = 142.88
C, = 91870
C, = 0.80000
C, = 99344
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The accuracy of this model for various pressures, tem-
peratures, and ranges of Z, as compared to the Garfinkel
data, can be seen in Table 2.

The signature of the residuals at large Z and with
P =760 mm and T = 0°C can be seen in Fig. 7 (modified
8th order In R fit). For use where simplicity is of a more
urgent need than accuracy, an abbreviated version of the
model can be obtained by setting:

A=A, = A, =0

such that one has:

() E) o5 v} )

where all quantities are as previously defined. The accu-
racy of this abbreviated version, once again as compared
to the Garfinkel data, is seen in Table 3. Also, the effects
of the deletion of A, is seen in Fig. 9, of A, in Fig. 10, and
of A; in Fig. 7.

VIll. FORTRAN Subroutines of the
Refraction Models
Appendix A presents a FORTRAN subroutine of the

full model described in Section VII, while Appendix B
presents a FORTRAN subroutine corresponding to the

abbreviated model, also described in Section VII. Inputs
required are as follows:

PRESS = pressure, mm of Hg
TEMP = temperature, K
ZNITH = actual zenith angle, deg

and the subroutine(s) return with:

R = refraction correction, sec

IX. Summary

An empirical model has been constructed which very
accurately reflects precise optical refraction data. The
salient features possessed by this model are as follows:

(1) Single analytic function.
(2) Finite over the entire domain of elevation angle.

(3) High accuracy for large ranges of pressure and
temperatures.

(4) Designed to minimize computer storage and run
time.

For S- and X-band applications, the model must be
transformed from optical frequencies to radio frequencies.
It is hoped that by considering the differences in optical
refractivity versus radio frequency refractivity, a reason-
ably accurate method of transforming optical refraction
to radio frequency refraction can be found.
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Table 1. Garfinkel refraction data= for
P=760mmandT = 0°C

Table 1 (contd)

z R R’ z R R’
0.0 0.00 0.00 225 25.09 25.09
0.5 0.55 055  23.0 25.71 25.72
1.0 1.07 1.08 235 26.33 26.34
1.5 1.61 1.61 240 26.97 26.97
2.0 2.15 215 245 27.60 27.61
2.5 2.68 268 250 28.95 28.26
3.0 3.29 3.22 255 28.90 28.91
3.5 3.75 376  26.0 29.55 29.56
4.0 4.29 429 265 30.21 30.22
45 4.83 483 270 30.88 30.89
5.0 5.36 536  27.5 31.55 31.56
5.5 5.90 590 280 32.23 32.24
6.0 6.43 6.44 285 32.91 32.92
6.5 6.97 6.97  29.0 33.60 33.62
7.0 7.51 751 295 34.30 34.32
7.5 8.05 805  30.0 35.01 35.02
8.0 8.59 859 305 35.72 35.73
85 9.12 9.13 310 36.43 36.45
9.0 9.67 967 315 37.16 37.17
9.5 10.21 1021 820 37.89 37.91

10.0 10.75 1075 32.5 38.63 38.65

10.5 11.30 1130  33.0 39.38 39.40

11.0 11.84 1184 335 40.14 40.16

115 12.39 1239 340 40.90 40.92

12.0 12.94 1294 345 41.68 41.70

12.5 13.49 1349 850 42.46 492.48

13.0 14.04 1405 355 43.26 43.27

13.5 14.60 1460  36.0 44.06 44.08

14.0 15.15 1516 365 44.87 44.89

14.5 15.71 1572 370 45.69 4571

15.0 16.28 1628 375 46.53 46.55

15.5 16.84 1685 380 47.37 47.39

16.0 17.41 1741 385 48.23 48.95

16.5 17.98 17.98 390 49.10 49.12

17.0 18.55 1856  39.5 49.98 50.00

175 19.13 19.13 400 50.87 50.89

18.0 19.70 1971 405 51.77 51.80

185 20.29 2029  41.0 52.69 52.72

19.0 20.87 20.88 415 53.62 53.65

19.5 21.46 2147 420 54.56 54.59

20.0 22.06 22.06 425 55.52 55.55

20.5 29.65 2266  43.0 56.50 56.53

21.0 23.26 23.66  43.5 57.49 57.52

21.5 23.86 23.87  44.0 58.50 58.53

22.0 24.47 24,48 445 59.52 59.56

3R gives the refraction correction if Z = actual while R’ gives the

refraction correction if Z = observed.

z R R Z R R

45.0 60.56 60.60  69.0  156.61 156.97
455 61.63 61.67 695  160.75 161.13
46.0 62.72 6276 700  165.06 165.46
46.5 63.83 63.87 702  166.83 167.25
47.0 64.95 64.99 704  168.63 169.06
415 66.10 66.15 70.6 17047 170.91
48.0 67.28 67.32 708  172.33 172.78
485 68.47 6852 710  174.23 174.69
49.0 69.69 6973 712 17616 176.64
495 70.93 7097 714 17813 178.63
50.0 72.19 7224 716 180.15 180.66
50.5 73.48 7853 718 182.20 182.73
51.0 74.79 7485 720 18430 184.85
51.5 76.14 7619 722 186.44 187.01
52.0 77,51 7757 724 188.64 189.23
52.5 78.91 7897 726 190.90 191.51
53.0 80.34 8040 728 19321 193.84
58.5 81.80 81.87 730 19557 196.22
54.0 83.30 83.37 732 19797 198.64
54.5 84.83 8491 734 2004l 201.10
55.0 86.40 8648 736  202.90 203.62
55.5 88.02 88.10 738 20545 206.19
56.0 89.68 89.77 740  208.07 208.84
56.5 91.89 9148 742 21075 211.56
57.0 93.14 93.23 744 21351 214.35
57.5 94.94 95.03 746  216.34 217.20
58.0 96.78 96.88 748  219.23 220.12
58.5 98.67 9878 750  222.18 223.11
59.0  100.61 10072 752 225.21 226.18
595  102.61 10272 754 228.33 229.34
60.0  104.66 10478 756 23154 232.60
60.5  106.76 10689 758  234.84 235.94
610  108.93 109.06 760  238.20 239.34
615 11117 11131 762  241.64 242.81
620  113.49 11364 764 24515 246.37
625  115.98 11610 766 24877 250.05
630 11847 11864 768 25250 253.85
635 12110 12128 770 25635 257.75
64.0  123.79 12398 772 260.29 261.74
645  126.53 12672 774 26433 265.85
650  129.35 12956 776 26850 270.10
655  132.28 13250 778 27280 274.48
660  185.33 13557 780  277.24 279.00
665 13851 138876 782  281.80 283.63
670  141.82 14209 784  286.49 288.41
675 14526 14555 786  291.32 293.34
68.0  148.86 149.17 788  296.33 298.45
685  152.64 15297 790  30L50 303.73

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

153



Table 1 (contd) Table 1 (contd)

z R R VA R R z R R z R R
79.2 306.85 309.20 86.9 842.56 88573 91.7 3160.32 5090.87 92.4 4009.10 8246.36
79.4 312.36 314.82 87.0 859.68 905.41 91.8 3269.46 5418.31 92.5 4147.07 8926.70
79.6 318.03 320.62 87.1 877.38 995.93 919 3382.48 5777.87 92.6 4289.48 9692.48
79.8 393.92 326.68 87.2 895.71 047.94 92.0 3499.59 6174.23 92.7 4436.33 10560.24
800  330.09 33302 873 91473 969.38 921  9621.06 661215 928  4587.50  11551.26
80.2 336.46 339.52 87.4 934.45 992.51 92.2 3746.26 7097.56 92.9 4742.84 12684.70
80.4 349.99 346.20 87.5 954.84 1016.58 92.3 3875.53 7638.78 93.0 4902.77 13986.89
80.6  349.75 35318 87.6 97596  1041.62
80.8  356.81 36045 877 99791  1067.68 Table 2. Maximum refraction model residuals for selected
81.0  864.17 368.05 878 102064  1095.01 P, T, and ranges of Z
812  371.82 37593 879 104416 112353
81.4 379.76 384.12 88.0 1068.53 1153.28 Temperature, Maximum refraction model residuals, sec
81.6  887.99 39261 881  1093.93  1184.47 oC p—— p— P—
818  396.55 40148 882 112027  1217.10
820  405.48 41074 883 114759  1251.29 a 0° < Z < 85°
822 41476 42035 884 117601  1287.15
824 42444 43045 885 120555  1324.68 —10 +4.59 487 +5.05
82.6  434.59 44105 886 123625  1364.16 0 +5.25 +5.59 +5.82
82.8 44521 45212 887 126819 140355 +10 +5.83 6.2 +6.51
830 45650 46371 888 130138 144901 +20 t6.41 688 718
832  467.87 47582 889 133590 149478 +30 +6.98 +7.50 783
834  480.03 48871  89.0 1371.84  1543.13 b. 85° < Z < 93°
836  492.90 50221  89.1  1409.18  1594.01
838  506.32 51628 892 144801  1647.64 —10 —15.41 —18.36 —24.30
840 52081 53110  89.3 148847  1704.25 0 ~13.56 —15.03 —1745
842 53504 54676 894 153070  1764.12 +10 —11.91 —14.27 —14.02
844 55057 563.28 895 157466  1827.44 +20 ~15.16 1477 —12.61
846 56691 58076 896 162040 189434 +30 —19.20 —16.20 1394
848  584.18 599.35 897  1668.02  1965.25 ’

850 60250 619.11  89.8  1717.65  2040.56 Table 3. Maximum refraction model residuals for selected

85.1 612.07 629.38 899  1769.36 2123.12 P, T, and ranges of Z: A, 4,, A, =0

852  621.88 639.99 900 182324  2205.54

85.3 631.94 650.89 90.1 1879.28 2298.34 Temperature, Maximum refraction model residuals, sec

854  642.32 662.10 902  1937.63  2392.18 oc — E—— o0

855  652.95 67370 903 199835  2495.00

856  663.88 68573 904 206249  2604.75 a. 0° < Z < 85°

857  675.18 698.15 905 213007  2722.08

858  686.86 71099  90.6 219681  2847.58 —10 +6.06 +6.38 +6.57

85.9 698.89 724.30 907  2269.53 2982.06 +1g iizz :g; 12(7):

860  711.31 . . . .

s oma T womsw s Gy [0 L 0
: : 2 =l : +30 +8.59 —5.41 —~6.06

862  737.33 766.87 91.0 250071  3450.46

86.3 - 750.87 782.12  91.1  2584.52 3632.11 b. 85° < Z < 93°

86.4  764.99 79778 912  2671.66  3827.51 "0 £ 102.05 188,07 278,69

865  779.57 81409 913 276219  4039.04 0 13049 95198 _398.88

86.6 794.50 831.04 91.4 2856.17 4269.13 +10 —196.42 —312.90 —395.56

867  809.95 848.62 915 295370  4519.72 +20 —258.65 —370.69 —450.09

868  825.98 866.83 91.6  3055.07  4792.26 430 —317.98 — 452.40 ~501.90

. 154 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24



/

AN
;r\ ﬁia\\ Q

3
7 L o
o 3 3
/
/
/
C //
2 7 2
P = 760 mm
T=0°C
GARFINKEL DATA //
CURRENT JPL MODEL /
/4
102 103
80 82 84 86 88 20 92

Z ACTUAL, deg

“Fig. 1. Current 3-segment JPL angular refraction model versus Garfinkel refraction data
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Fig. 2. Garfinkel refraction data
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Fig. 3. Garfinkel refraction data (logarithmic)
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Fig. 4. Garfinkel refraction data (arctan (In R))
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Fig. 5. Least squares fit of In R (Garfinkel data) to an
nth degree polynomial
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Fig. 6. Various functional forms of R fit to an nth degree polynomial
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Fig. 7. 8th degree and modified 8th degree polynomial fit to In R (Garfinke! data)
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Fig. 8. Berman-Rockwell refraction model
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Fig. 9. Refraction model with and without A, (pressure correction factor)
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Fig. 10. Refraction model with and without A, (temperature correction factor)
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0014n
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0014y
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00147
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00104
00105
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36%
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Appendix A

SUBROUTINE REND(PRESS» TEMPeZNITHIR)
DIMENSION A(2)»B(2),C(2)»E(12),P(2)9T(2)s2(2)

P(1) = 760.00
P(2) = PRESS

T(1) = 273.00
T(2) = TEMP

Z(1) = 91.870
Z(2) = ZNITH
A(1l) = ,40816
A(2) = 112.30
B(1) = ,12820
B(2) = 142.88
C(1) = .80000
C(2) = 99.3uh
E(1l) = 46.625
E(2) = 45,375
E(3) = 4.1572
E(4) = 1.4468
E(5) = ,25301
E(6) = 2.2716
E(7) =-1.3465
E(8) ==~4.3877
E(9) = 3.14n4
E(10)= 4.5201

E(11)==1.8982
E(12)= ,89000
D3=1.+DELTA(Z¢CrZ(2))
FP=(P(2)/P (1)) x(1,-DELTA(PYA,7(2))/D3)
FT'(T(l)/T(Q))*(1.-OELTA(T0R'7(?))/53)
uz(z2(2)=E(1))/E(2)
X=E(11)
DO 1 I=1+8
X=E(11=T)+UxX
‘FT*FP*(EXP(X/DS)-f(la))
RETURN
END

FUNCTION DELTA(A9B¢?)

DIMENSION A(2),R(2)
DELTAZ(A(2)=A(1))*xEXP(B(1)*(72=B8(2)))
RETURN

END
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00101
00103
00104
00105
00106
00107
00110
00111
00112
00113
0011y
00115
00116
00117
00120
00121
00122
00123
00124
go12s
00126

‘00131

00133
00134
00135

1%
2%
A%k
4%
5%
6%
7%
Bx

9x

LO*
11%
12*
13x%
14%*
15%
16%
17%

18%-

19%
20x%
21*
22%
23x%
24%
25%

Appendix B

SUBROU
DIMENS
p -
T
E(1)
E(2)
E(3)
E(4)
E(5)
E(6)
E(7)
E(8)
E(9)-
FE(10)
E(11)=
E(12)=
FP=PRE
FT=T/T7
U=(2ZN1
X=E£(11
Do 11
X=E(11
R=FT*F
RETURN
END

TINE BEND(PRESSeTEMP»ZNITH!R)

ION E(12)
760.00
273,00
46,625
45,375
41572
1.4468
«25391
2:2716

"’1 [} 3465

-l 6 3877

3.1484

4.,5201

-1.8982
«83000

SS/p

EMP

TH=E(1))/E(2)

)

=18

-1)+Ux%xX

Px(EXP(X)=E(12))

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24



